Retrieves time series data from the EPI State of Working America Data Library API.
Usage
get_swadl(
indicator,
measure,
date_interval = c("year", "month"),
geography = "national",
dimension = "overall",
date = NULL
)Arguments
- indicator
Indicator ID (e.g.,
"hourly_wage_percentiles"). Useswadl_id_names()to see available indicators.- measure
Measure ID (e.g.,
"nominal_wage"). Useswadl_id_names()orswadl_indicator()to see available measures.- date_interval
Either
"year"or"month". Defaults to"year".- geography
A geography specification. Accepts state names (e.g.,
"California"), abbreviations (e.g.,"CA"), region names (e.g.,"Midwest"), division names (e.g.,"Pacific"), or API IDs (e.g.,"state06"). Defaults to"national".- dimension
Dimension specification. Can be:
"overall": Returns aggregate data without demographic breakdownA dimension ID (e.g.,
"wage_percentile"): Returns all values for that dimensionA list with named and/or unnamed elements:
Named elements filter to specific values:
list("wage_percentile" = "wage_p50")Unnamed elements return all values:
list("wage_percentile")Multiple dimensions can be cross-tabulated, but only one dimension can return all values; the others must specify values:
list("gender" = "gender_male", "age_group")
- date
Optional date filter. Can be:
NULL(default): All available datesA single date (character or Date): Returns only that date
A vector of two dates: Returns dates in that range (inclusive)
Value
A tibble with columns:
date: Observation datevalue: The observed valuegeography: Geography IDOne column per dimension in the request, containing dimension value IDs
See also
swadl_indicator() for indicator details, swadl_id_names() to
list indicators, measures, and dimensions.
Examples
# \donttest{
# Median hourly wage over time
get_swadl(
"hourly_wage_percentiles",
"nominal_wage",
dimension = list("wage_percentile" = "wage_p50")
)
#> # A tibble: 53 × 4
#> date value geography wage_percentile
#> <date> <dbl> <chr> <chr>
#> 1 1973-01-01 3.35 national wage_p50
#> 2 1974-01-01 3.62 national wage_p50
#> 3 1975-01-01 3.94 national wage_p50
#> 4 1976-01-01 4.12 national wage_p50
#> 5 1977-01-01 4.41 national wage_p50
#> 6 1978-01-01 4.73 national wage_p50
#> 7 1979-01-01 5.11 national wage_p50
#> 8 1980-01-01 5.63 national wage_p50
#> 9 1981-01-01 6.10 national wage_p50
#> 10 1982-01-01 6.46 national wage_p50
#> # ℹ 43 more rows
# All wage percentiles
get_swadl(
"hourly_wage_percentiles",
"nominal_wage",
dimension = "wage_percentile"
)
#> # A tibble: 477 × 4
#> date value geography wage_percentile
#> <date> <dbl> <chr> <chr>
#> 1 1973-01-01 1.72 national wage_p10
#> 2 1973-01-01 6.51 national wage_p90
#> 3 1973-01-01 5.17 national wage_p80
#> 4 1973-01-01 4.48 national wage_p70
#> 5 1973-01-01 3.87 national wage_p60
#> 6 1973-01-01 3.35 national wage_p50
#> 7 1973-01-01 2.91 national wage_p40
#> 8 1973-01-01 2.47 national wage_p30
#> 9 1973-01-01 2.06 national wage_p20
#> 10 1974-01-01 1.95 national wage_p10
#> # ℹ 467 more rows
# Employment rate for males by age group
get_swadl(
"labor_force_emp",
"percent_emp",
dimension = list("gender" = "gender_male", "age_group")
)
#> # A tibble: 150 × 5
#> date value geography gender age_group
#> <date> <dbl> <chr> <chr> <chr>
#> 1 1976-01-01 0.624 national gender_male age_16_24
#> 2 1976-01-01 0.460 national gender_male age_55_plus
#> 3 1976-01-01 0.895 national gender_male age_25_54
#> 4 1977-01-01 0.644 national gender_male age_16_24
#> 5 1977-01-01 0.457 national gender_male age_55_plus
#> 6 1977-01-01 0.902 national gender_male age_25_54
#> 7 1978-01-01 0.460 national gender_male age_55_plus
#> 8 1978-01-01 0.911 national gender_male age_25_54
#> 9 1978-01-01 0.663 national gender_male age_16_24
#> 10 1979-01-01 0.456 national gender_male age_55_plus
#> # ℹ 140 more rows
# Filter to specific date range
get_swadl(
"hourly_wage_percentiles",
"nominal_wage",
dimension = "wage_percentile",
date = c("2000-01-01", "2024-01-01")
)
#> # A tibble: 225 × 4
#> date value geography wage_percentile
#> <date> <dbl> <chr> <chr>
#> 1 2000-01-01 6.14 national wage_p10
#> 2 2000-01-01 27.0 national wage_p90
#> 3 2000-01-01 20.6 national wage_p80
#> 4 2000-01-01 16.9 national wage_p70
#> 5 2000-01-01 14.2 national wage_p60
#> 6 2000-01-01 12.0 national wage_p50
#> 7 2000-01-01 10.2 national wage_p40
#> 8 2000-01-01 8.85 national wage_p30
#> 9 2000-01-01 7.46 national wage_p20
#> 10 2001-01-01 6.49 national wage_p10
#> # ℹ 215 more rows
# }
