Searches across all indicators to find which data is available matching specified criteria. Useful for answering questions like "Which indicators have state-level data by race?"
Usage
swadl_availability(
indicator = NULL,
measure = NULL,
date_interval = NULL,
geo_level = NULL,
dimensions = NULL,
dimensions_match = c("exact", "all", "any")
)Arguments
- indicator
Character vector of indicator IDs to filter to. If
NULL(the default), includes all indicators.- measure
Character vector of measure IDs to filter to. If
NULL(the default), includes all measures.- date_interval
Character vector of date intervals to filter to. Valid values are
"year","quarter", and"month". IfNULL(the default), includes all date intervals.- geo_level
Character vector of geographic levels to filter to. Valid values are
"national","state", and"division". IfNULL(the default), includes all geographic levels.- dimensions
Character vector of dimension IDs to match. How these are matched depends on
dimensions_match. IfNULL(the default), no dimension filtering is applied.- dimensions_match
How to match the
dimensionsargument:"exact"The dimensions column must exactly match the provided dimensions (order-insensitive). For example,
c("gender", "race")matches"gender × race"but not"age_group × gender × race"."all"The dimensions column must contain ALL provided dimensions (may contain more). For example,
c("gender", "race")matches both"gender × race"and"age_group × gender × race"."any"The dimensions column must contain ANY of the provided dimensions. For example,
c("gender", "race")matches"gender","race","gender × race", and"age_group × gender".
Value
A tibble with columns:
- indicator_id
Indicator identifier
- indicator_name
Human-readable indicator name
- date_interval
"year","quarter", or"month"- measure_id
Measure identifier
- geo_level
"national","state", or"division"- dimensions
Dimension combination (e.g.,
"gender × race") or"overall"for aggregate data- date_start
Start of available date range
- date_end
End of available date range
See also
swadl_indicator() for detailed information about a single
indicator, swadl_id_names() to list all indicators.
Examples
# \donttest{
# Find all indicators with state-level gender data
swadl_availability(geo_level = "state", dimensions = "gender",
dimensions_match = "any")
#> # A tibble: 87 × 8
#> indicator_id indicator_name date_interval measure_id geo_level dimensions
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 hourly_wage_mean Hourly wage, … year nominal_w… state gender
#> 2 hourly_wage_mean Hourly wage, … year real_wage… state gender
#> 3 hourly_wage_med… Hourly wage, … year nominal_w… state gender
#> 4 hourly_wage_med… Hourly wage, … year real_wage… state gender
#> 5 hourly_wage_per… Hourly wage p… year wage_ratio state gender × …
#> 6 hourly_wage_per… Hourly wage p… year nominal_w… state gender × …
#> 7 hourly_wage_per… Hourly wage p… year real_wage… state gender × …
#> 8 labor_force_emp Employment by… month count_emp… state gender
#> 9 labor_force_emp Employment by… month dist_shar… state gender
#> 10 labor_force_emp Employment by… month percent_e… state gender
#> # ℹ 77 more rows
#> # ℹ 2 more variables: date_start <date>, date_end <date>
# Find indicators with a specific measure
swadl_availability(measure = "percent_emp")
#> # A tibble: 33 × 8
#> indicator_id indicator_name date_interval measure_id geo_level dimensions
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 labor_force_emp Employment by … year percent_e… division age_group
#> 2 labor_force_emp Employment by … year percent_e… division education
#> 3 labor_force_emp Employment by … year percent_e… division fpl200
#> 4 labor_force_emp Employment by … year percent_e… division gender
#> 5 labor_force_emp Employment by … year percent_e… division race
#> 6 labor_force_emp Employment by … year percent_e… division overall
#> 7 labor_force_emp Employment by … year percent_e… national age_group…
#> 8 labor_force_emp Employment by … year percent_e… national age_group…
#> 9 labor_force_emp Employment by … year percent_e… national age_group…
#> 10 labor_force_emp Employment by … year percent_e… national age_group…
#> # ℹ 23 more rows
#> # ℹ 2 more variables: date_start <date>, date_end <date>
# Find all availability for a specific indicator
swadl_availability(indicator = "hourly_wage_percentiles")
#> # A tibble: 48 × 8
#> indicator_id indicator_name date_interval measure_id geo_level dimensions
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 hourly_wage_per… Hourly wage p… year nominal_w… division education…
#> 2 hourly_wage_per… Hourly wage p… year nominal_w… division gender × …
#> 3 hourly_wage_per… Hourly wage p… year nominal_w… division race × wa…
#> 4 hourly_wage_per… Hourly wage p… year nominal_w… division wage_perc…
#> 5 hourly_wage_per… Hourly wage p… year nominal_w… national age_group…
#> 6 hourly_wage_per… Hourly wage p… year nominal_w… national age_group…
#> 7 hourly_wage_per… Hourly wage p… year nominal_w… national age_group…
#> 8 hourly_wage_per… Hourly wage p… year nominal_w… national education…
#> 9 hourly_wage_per… Hourly wage p… year nominal_w… national education…
#> 10 hourly_wage_per… Hourly wage p… year nominal_w… national gender × …
#> # ℹ 38 more rows
#> # ℹ 2 more variables: date_start <date>, date_end <date>
# Find indicators with exact "gender × race" combinations at national level
swadl_availability(geo_level = "national",
dimensions = c("gender", "race"), dimensions_match = "exact")
#> # A tibble: 59 × 8
#> indicator_id indicator_name date_interval measure_id geo_level dimensions
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 hourly_wage_mean Hourly wage, … year nominal_w… national gender × …
#> 2 hourly_wage_mean Hourly wage, … year real_wage… national gender × …
#> 3 hourly_wage_med… Hourly wage, … year nominal_w… national gender × …
#> 4 hourly_wage_med… Hourly wage, … year real_wage… national gender × …
#> 5 labor_force_ann… Time at work year hours_wor… national gender × …
#> 6 labor_force_ann… Time at work year hours_wor… national gender × …
#> 7 labor_force_ann… Time at work year weeks_wor… national gender × …
#> 8 labor_force_emp Employment by… month count_emp… national gender × …
#> 9 labor_force_emp Employment by… month percent_e… national gender × …
#> 10 labor_force_emp Employment by… year count_emp national gender × …
#> # ℹ 49 more rows
#> # ℹ 2 more variables: date_start <date>, date_end <date>
# }
